EKG- und Aktivitätssensor

Der movisens ekgMove ist ein psychophysiologisches ambulantes Messsystem – optimiert für den Einsatz in der Forschung.

Der Sensor zeichnet die Rohdaten des EKG-Signals, der 3-Achsen-Beschleunigung, des barometrischen Höhensensors und der Temperatur über bis zu 2 Wochen auf.

Aus diesen Messparametern können mit der Analyse-Software DataAnalyzer Ausgabeparameter wie Herzfrequenz, Herzratenvariabilität, Schritte, Aktivitätsklassen, Energieumsatz berechnet (Excel) und aussagekräftige Berichte (PDF) erzeugt werden.

Der Sensor kann sowohl mit einem Brustgurt (erhältlich in den Größen XS, S, M, L, XL) als auch mit Einweg-Elektroden genutzt werden.





Für kostenfreies Studentenprojekt bewerben
EKG- und Aktivitätssensor ekgMove, Vorderseite

 


Top-Features

  • Kombination von EKG- und Aktivitätsmessung in einem System
  • Bequemer Brustgurt liefert perfekte Signalqualität bei Langzeitmessungen (bis 2 Wochen), keine störenden Elektrodenkabel
  • Exakte und validierte Energieumsatzbestimmung und Erkennung von Alltagsaktivitäten
  • Nachhaltige Daten durch offenes Rohdatenformat
  • Praktikable und einfache Handhabung in Studien
  • Offene Schnittstellen: SDK für Bluetooth und USB

Anwendungen

  • Mobiles EKG-Langzeit-Monitoring
  • Mobiles Langzeit-Monitoring von Herzrate und Herzratenvariabilität
  • Untersuchung des vegetativen Nervensystems
  • Verhaltensmonitoring
  • Psycho-physiologisches Belastungs-Monitoring
  • Energieumsatzschätzung und Aktivitätserkennung
  • Anwendung in der Psychoneuroimmunologie
  • Affective Computing
  • Integration in komplexe Systeme

Dazu passende Produkte und Dienstleistungen

DataAnalyzer Software, Box

DataAnalyzer
zur Auswertung der Sensordaten

Zubehör
und Verbrauchsmaterial für die Sensoren

Smartphone mit movisensXS

movisens XS Smartphone-basiertes Experience Sampling

Downloads

Software
Dokumentation
Beispieldaten
Beispielberichte
Externe Tools

Technische Daten

Power supply

Lithium-Ion battery

Supply voltage

3 V

Battery voltage

2,7 - 4,2 V

Number of charging cycles

300 with 1C/1C > 80%

Maximum recording capacity

At least 2 weeks, depending on firmware configuration

Battery run time (recording, Bluetooth off)

~ 2 days

Size of sensor

(W x H x D)

62,3mm x 38,6mm x 10,5mm

Weight of sensor

23,2g

Internal sensors

ECG-Amplifier:

Resolution: 12bit, Input range CM=560mV, DM=+/-5mV, Gain 227,

3db bandwidth 1,6 to 33Hz

Output rate: 256Hz to 1024Hz

 

3D acceleration sensor:

Measurement range: +/- 8 g

Noise: 4 mg

Output rate: 64 Hz

 

Pressure sensor:

Measurement range: 300 - 1100 hPa

Noise: 0,03 hPa

Output rate: 1 Hz

Indicators

LED, 3-color

(operation and charging status)

Vibrating alert (start and end of measurement)

Interfaces

Micro-USB, Bluetooth

Environmental conditions

Temperature:

-20 °C to 60 °C

0 °C to 45 °C during charging

 

Humidity:

0 to 75% RH relative humidity

 

Atmospheric pressure:

300 to 1100 hPa absolute

Literatur

  • Physical Activity and Affective Well-Being in Everyday Life Comparing Sport Activities and Daily Physical Activities Regarding Acute and Sustainable Associations.
    Stephanie Jeckel & Gorden Sudeck (2016) in: Zeitschrift für Gesundheitspsychologie (24).
  • Prolonged Non-metabolic Heart Rate Variability Reduction as a Physiological Marker of Psychological Stress in Daily Life.
    Bart Verkuil & Jos F Brosschot & Marieke S Tollenaar et al. (2016) in: Annals of Behavioral Medicine. Read more...
  • Resource Efficient Data Compression Algorithms for Demanding, WSN based Biomedical Applications .
    Christos P. Antonopoulos & Nikolaos S. Voros (2015) in: Journal of Biomedical Informatics . Read more...
  • Mobile Sensors for Multiparametric Monitoring in Epileptic Patients.
    Stefan Hey & Panagiota Anastasopoulou & André Bideaux et al. (2015) in: Cyberphysical Systems for Epilepsy and Related Brain Disorders: Multi-parametric Monitoring and Analysis for Diagnosis and Optimal Disease Management. Read more...
  • Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients.
    Dimitrios Triantafyllopoulos & Panagiotis Korvesis & Iosif Mporas et al. (2015) in: Journal of Medical Systems (40). Read more...
  • Does a 20-week aerobic exercise training programme increase our capabilities to buffer real-life stressors? A randomized, controlled trial using ambulatory assessment.
    Birte von Haaren & Joerg Ottenbacher & Julia Muenz et al. (2015) in: European Journal of Applied Physiology. Read more...
  • Integrating biosignals into information systems: A NeuroIS tool for improving emotion regulation.
    Philip J. Astor & Marc T. P. Adam & Petar Jerčić et al. (2014) in: Journal of Management Information Systems (01).
  • A personalized and reconfigurable cyberphysical system to handle multi-parametric data acquisition and analysis for mobile monitoring of epileptic patients.
    A. Bideaux & P. Anastasopoulou & S. Hey et al. (2014) in: Sensing and Control S&C BArcelona, Spain. Read more...
  • Study protocol: psychological and physiological consequences of exposure to mass media in young women-an experimental cross-sectional and longitudinal study and the role of moderators.
    Simone Munsch (2014) in: BMC Psychology (2). Read more...
  • Comparing Objective and Subjective Methods to Support Reflective Learning: an Experiment on the Influence on Affective Aspects.
    Verónica Rivera-Pelayo & Marc Kohaupt (2014). Read more...
  • Emotions and Emotion Regulation in Economic Decision Making.
    Philipp J. Astor (2013). Read more...
  • Design and Evaluation of Affective Serious Games for Emotion Regulation Training.
    Petar Jercic (2013).
  • Komfortgewinn für Passagiere auf Langstreckenflügen durch den Einsatz chronobiologisch angepasster LED-Kabinenbeleuchtung.
    A. Leder & J. Krajewski & S. Schnieder (2013) in: Deutscher Luft- und Raumfahrtkongress 2013, Stuttgart. Read more...
  • A Biofeedback Game for Training Arousal Regulation during a Stressful Task: The Space Investor.
    Olle Hilborn & Henrik Cederholm & Jeanette Eriksson et al. (2013) in: Human-Computer Interaction. Towards Intelligent and Implicit Interaction (8008). Read more...
  • Measuring emotional arousal for online applications: Evaluation of ultra-short term heart rate variability measures.
    Kristina Schaaff & Marc T. P. Adam (2013) in: International Conference on Affective Computing and Intelligent Interaction (ACII).
  • Enhancing mobile working memory training by using affective feedback..
    K. Schaaff (2013) in: IADIS International Conference on Mobile Learning, 14-16 March 2013, Lisbon, Portugal, 2013, Conference Proceedings pp. 269-273..
  • Mobile sensor systems for measurement of stress and physical activity in preventive healthcare applications.
    S. Hey (2012).
  • A Serious Game using Physiological Interfaces for Emotion regulation Training in the Context of Financial Decision-Making..
    Petar Jercic & Philipp J Astor & Marc Thomas Philipp Adam et al. (2012) in: Presented at European Conference of Information Systems (ECIS 2012), Barcelona, Spain, 10-13 June 2012. Read more...
  • An approach to automotive ECG measurement validation using a car-integrated test framework.
    Johannes Schneider & Christian Koellner & Stephan Heuer (2012) in: Intelligent Vehicles Symposium (IV), 2012 IEEE. Read more...
  • Motivation and User Acceptance of Using Physiological Data to Support Individual Reflection.
    A. Fessl & V. Rivera-Pelayo & L. Müller et al. (2011) in: 2nd International Workshop on Motivational and Affective Aspects in Technology Enhanced Learning (MATEL 11). Read more...
  • Estimation of energy expenditure using accelerometers and activity-based energy models - validation of a new device.
    S. Härtel & J. P Gnam & S. Löffler et al. (2011) in: European Review of Aging and Physical Activity (Volume 8). Read more...
  • User Study: Motivation and User Acceptance of Using Physiological Data to Support Individual Reflection..
    Angela Fessl & Verónica Rivera-Pelayo & Lars Müller et al. (2011).
  • From Stress Awareness to Coping Strategies of Medical Staff: Supporting Reflection on Physiological Data.
    Lars Müller & Veronica Rivera Pelayo & Christine Kunzmann et al. (2011) in: Second International Workshop on Human Behavior Understanding HBU 2011. Read more...
  • Einsatz sensorgestützter Verfahren im Gesundheitswesen: Herausforderungen und Lösungsansätze.
    D.I.D.S. Saboor & M.F.H.M. Schallhart (2011). Read more...
  • Sensor Chest Strap Wirelessly Coupled with an e-Diary for Ambulatory Assessment of Psycho-Physiological Data.
    Jürgen Stumpp & Panagiota Anastasopoulou & Hatem Sghir et al. (2011) in: Assessing Real-World Impact of Clinical Interventions and Outcomes.
  • Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology..
    (1996) in: Circulation (93).

Weitere Publikationen finden Sie hier.