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Figure 1: Move 3 

Introduction 
An important determinant of health is 
physical activity, which has been defined 
as “[…] any bodily movement produced by 
the contraction of skeletal muscle that 
increases energy expenditure (EE) above 
a basal level” (US Department of Health 
and Human Services, 2008). Insufficient 
activity increases the risk of developing 
several diseases, e.g. coronary heart 
diseases. To avoid such diseases, at least 
30 min of moderate physical activity at five 
days a week has been recommended 
(Garber, et al., 2011). But to check the 
compliance of such recommendations is 
critical and with subjective methods 
impossible (Rosenbaum, 2012). Therefore 
objective methods are required. 
Additionally, physical activity can be 
classified qualitatively (sedentary 
behavior, locomotion, work), quantitatively 
(frequency, duration, intensity) and 
contextually (time, place, position, posture) 
(Butte, Ekelund, & Westerterp, 2012). In 
the past years a lot of research has been 
devoted to developing objective physical 
activity measurement-tools tools, e.g. 
wearable monitors. The golden standard 

to assess EE is doubly labeled water. But 
due to its large volume and the high costs 
involved, this method isn’t applicable in 
everyday life situations.  
Thus, a common method to assess 
physical activity is the estimation of EE 
using wearable monitors. But these 
measurement tools differ in recorded 
parameters and the data processing that 
follows. Therefore some devices are more 
and some are less appropriate for EE 
estimations. For instance, with 
pedometers it is difficult to measure the 
step length and thus the covered distance 
– both influencing factors on EE. In 
addition, vertical displacement and 
movement of the upper body are also 
missing from this data. Hence, 
pedometers are inappropriate for EE 
estimations. In contrast, a popular 
measurement tool for physical activity is 
an accelerometer. There are a lot of 
different approaches in processing raw 
data for EE estimation. This inconsistency 
results in several issues (saving and 
displaying raw data (mg) vs. Counts (John 
& Freedson, 2012; Welk, McClain, & 
Ainsworth, 2012); activity based model vs. 
linear regression model (Lyden, Kozey, 
Staudenmeyer, & Freedson, 2011); more 
precise EE estimation with additional 
sensors (Grams, Tegtbur, Kück, Gützlaff, 
Marschollek, & Kerling, 2011). These 
issues and existing technologies relating 
to accelerometry will be discussed in the 
following section.  
 
Raw data vs. Counts 
Accelerometers (E.g. activity sensor Move 
3; c.f. Figure 1) come in a wide range with 
different approaches on how to process 
the raw acceleration data. Unfortunately, 
there is no standard for data processing 
and thus there are no standardized output 
variables. Hence, data processing 
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depends on the corresponding company. 
Several companies use an imaginary 
transformed variable called Counts, 
calculated from the raw acceleration data. 
Counts are generated during the data 
processing by filtering after the 
acceleration signal is recorded. The filter 
used depends on the company and thus 
this inconsistency makes it nearly 
impossible to compare different devices 
from different companies. Therefore it is 
recommended to capture and store data in 
a unique storage format, and then process 
the data to obtain information. Raw data 
as output variable – the 
unprocessed/unfiltered raw acceleration 
signal of each axis (direction: x, y, z; unit: 
mg) – are also favored (Hey, 
Anastasopoulou, & von Haaren, 2014; 
John & Freedson, 2012; Welk, McClain, & 
Ainsworth, 2012). Based on these 
suggestions, the movisens sensors (Move 
3, EcgMove 3, LightMove 3 and edaMove) 
record and save the raw data from the 
triaxial acceleration signal. Thus it is also 
possible to recalculate parameters, e.g. 
EE, at a later date with new algorithms 
and new methods.  
 
Linear regression vs. activity based 
models 
Another problem estimating EE is that 
after filtering the raw data, a lot of devices 

use linear regression models. Single 
regression models are known to over- or 
underestimate EE due to the non-linear 
relationship between activity and EE. For 
example, additional load on the body 
(pulling, pushing,..) can’t be measured 
(Hey, Anastasopoulou, & von Haaren, 
2014). Thus no single regression model is 
appropriate to estimate EE and hence, the 
use of linear regression models is 
questionable (Butte, Ekelund, & 
Westerterp, 2012; Crouter, Churilla, & 
Basset Jr, 2006). It could be shown, that 
an activity-based regression model (c.f. 
Figure 2) is advantageous and more 
accurate (c.f. Figure 3) (Campbell, 
Crocker, & McKenzie, 2002). The sensors 
from movisens use a triaxial 
accelerometer for activity recognition. The 
acceleration data is classified into relevant 
activity classes before further processing. 
Afterwards the appropriate algorithm for 
the corresponding activity class is 
selected. This approach seems to be 
advantageous compared to other devices 
and results in a more accurate EE 
estimation than other devices 
(Anastasopoulou, Tubic, Schmidt, 
Neumann, Woll, & Härtel, 2014; Härtel, 
Gnam, Löffler, & Bös, 2011; Lyden, Kozey, 
Staudenmeyer, & Freedson, 2011). 

 
 

 
Figure 2: Schematic description of the activity based EE estimation 
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Figure 3: Predicting EE with a linear (top) and an 

activity based model (bottom) (source: 
Anastasopoulou et al., 2014) 

 
 
Sensorfusion 
To improve EE estimation, the movisens 
sensors include a barometric sensor to 
assess changes in altitude. The fault of 
most common accelerometers is that they 
are not precise in EE estimation for 
ascending/decending a slope or stairs. 
This problem results out of a similar 
walking pattern while walking on an 
incline/stair compared to walking on a flat 
surface (Anastasopoulou, Tubic, Schmidt, 
Neumann, Woll, & Härtel, 2014; Campbell, 
Crocker, & McKenzie, 2002). Including 
more sensors and thus generating more 
information about the inclination (flat vs. 
incline) and the movement in isolation lead 
to an improved EE estimation. This added 
barometric sensor improves the EE 
estimation accuracy significantly 
(Anastasopoulou, Härtel, Tubic, & Hey, 
2014). For example the sensors from 
movisens were evaluated with a mean 
classification rate of 98.2%, whereas the 
smallest classification rate was noted for 
cycling (95.1%) (Anastasopoulou, 
Tansella, Stumpp, Shammas, & Hey, 
2012). These accurate  classifications of 
activity lead to an improved EE estimation. 
Sensor fusion is not only limited to 

barometric sensors. Every conceivable 
and helpful sensor could be linked to 
accelerometers. E.g. measuring of heart 
rate could improve EE estimation (Butte, 
Ekelund, & Westerterp, 2012). 
 

 

Figure 4: Activity + ECG-Sensor (EcgMove 3 with 
chest belt) 

 
This approach is realised in the EcgMove 
3 (c.f. Figure 4), a sensor that combines 
the recording of activity and heart rate 
parameters such as heart rate or heart 
rate variability. The EcgMove 3 uses the 
heart rate for EE if a low activity is 
combined with a high heart rate. This 
might occure during “static” activities such 
as cycling or weight lifting. During such an 
activity nearly no acceleration signal can 
be recorded due to the fixed position of the 
accelerometer. Nevertheless this kind of 
activity comes along with a high EE and 
thus heart rate parameters seem to be a 
better pedictor for EE estimation. 
 
(Interactive) Ambulatory Assessmet 
Compared to questionnaires, activity 
sensors (accelerometers) provide the 
benefit of recording movement as the 
movement occurs. In contrast, forms come 
with a delay in recording of physical 
activity. Thus it has been stated that a 
sensor based system is advantageous to 
reduce systematic errors compared to 
traditionally timed forms (Rosenbaum, 
2012). The recording of data during one’s 
everyday life is called ambulatory 
assessment (not limited to activity sensors 
– also feasible with forms e.g. on a 
smartphone). This advantage offers new 
research methods and could provide 
better insights into daily activities. Most 
sensors are very small and thus wearing 
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them in everyday life doesn’t hinder 
participants. This approach makes it 
possible to check movement 
recommendations as described in the 
introduction. Using accelerometers offers 
insight into a wide range of topics for the 
research community. For instance the 
movisens sensors were used in a study to 
monitor patients with multiple sclerosis 
during their daily life. It was found that 
accelerometers can be used to capture 
changes in physical activity and walking 
ability and consequentially used for further 
interventions/training programs 
(Shammas, Zentek, von Haaren, 
Schlesinger, Hey, & Rashid, 2014). This 
demonstrates that using accelerometers 
could lead to changes in therapies or 
training and thus the quality of life in 
healthy and unhealthy people.  
 
 

 
Figure 5: Schematically illustration of IAA 

 
By using a combination of accelerometers 
and questionnaires, especially online on a 
smartphone, researchers can develop a 
better understanding of lifestyle through 
adding qualitative information to objective 
quantitative data. This approach is called 
Interactive Ambulatory Assessment (IAA) 
and allows the prompting of 
questionnaires during or a short time after 
a certain physical activity. A schematical 
illustration of IAA is depicted in Figure 5. 
This technique gives researchers the 
possibility to gain new insights into the 
psycho-physiological construct. Monitoring 
behavior or activity with forms popping up 
at random times, situations or contexts 
comes along with the issue that the 
accurate point of activity probably won’t be 
assessed. Thus Ebner-Priemer, Koudela, 
Mutz, & Kanning (2013) conducted a study 
to increase the number of questionnaires 
filled out during active periods in everyday 
life. By linking an activity sensor to a 
mobile device and using the activity to 
trigger the questionnaires, they reached a 

higher compliance during active periods. 
As this method is relatively new in the 
research community, the number of 
studies is so far limited. But the first 
studies were already conducted, utilising 
among other things the equipment of 
movisens (sensors + software 
movisensXS) (Walter, et al., 2013).  
 
 
Conclusion 
The algorithms of the movisens sensors 
try to eliminate all known issues regarding 
EE estimation and activity recording that 
have been stated for other devices (saving 
and displaying raw data (mg) instead of 
Counts; activity-based model instead of 
linear regression model; more precise EE 
estimation with additional sensors 
(acceleration + barometric sensor + skin 
temperature) instead of only one 
acceleration sensor). Thus we can deduce 
that the movisens sensors are the most 
precise mobile sensors available on the 
market. Additionally, combining these 
sensors with the Experience Sampling 
platform movisensXS for Interactive 
Ambulatory Assessment will lead to new 
insights and offers new opportunities for 
researchers to gain previously 
unobtainable insights in to the psycho-
physiological construct.  
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