The EdaMove 3 provides researchers with the most comprehensive tool for recording and analysing Electrodermal (Galvanic Skin Response) and physical activity. Capable of capturing up to 4 weeks of data, the EdaMove 3 allows researchers to isolate and understand emotional affect with greater clarity than before.

The EdaMove 3 combines our acclaimed accelerometers (featured in all our Move 3 range sensors), a high quality EDA sensor, and a Bluetooth Smart interface that allows the sensor to interact with our class leading Experience Sampling Platform movisensXS to trigger questionnaires based on changes in physiological parameters.

The sensor acquires the raw data of the EDA and the 3D acceleration of a test subject allowing secondary parameters like skin conductance level (SCL), skin conductance responses (SCR), and activity intensity to be calculated with the movisens DataAnalyzer software.

Capturing motion, barometric pressure and temperature allows a more precise analysis of the data. These parameters allow artefacts that normally hinder the analysis of EDA data in an ambulatory setting to be identified, and isolated accordingly. The sensor is worn with a wristband on either the wrist or ankle and comes with multi-use, non-polarizing sintered Ag/AgCl electrodes.

View latest version

Apply for free student project



  • Live analysis of data on the sensor
  • Bluetooth-Smart Interface
  • Complies with all relevant EDA-standards
  • Perfect signal quality in everyday life
  • Includes 3D acceleration sensor for the acquisition of physical activity and context information
  • Sustainable data format
  • Practical and easy to use in studies
  • Java API for USB (Windows)
  • API: Example implementation for Bluetooth Smart (Android)


  • Interactive ambulatory assessment
  • Mobile long-term monitoring of EDA (elecrodermal activity) / GSR (galvanic skin response)
  • Psycho physiologic monitoring
  • Research of the autonomic nervous system (ANS)
  • Behavioral monitoring
  • Work and Organisational Psychology
  • Clinical Psychology
  • Affective Computing
  • Integration into complex systems possible

Matching products and services


  • We constantly strive to develop and improve all of our products. To benefit from these improvements, please subscribe to our newsletter so that we can keep you fully informed. Register now.
Data Examples
External Tools

Technical data

Power supply


Battery voltage

3,0 - 4,2 V

Number of charging cycles

300 (with 1C/1C > 80%)

Internal memory

4 GB

Maximum recording capacity

4 weeks

Battery run time

~ 5 days

Recharging time

~ 1 hour

Size of sensor (W x H x D)

62,3 x 38,6 x 11,5 mm

Weight of sensor

31 g

Internal sensors

EDA sensor:

Exosomatic method, constant voltage, DC, 0,5V

Resolution: 14 bit, Input range 2 µS up to100 µS

Bandwith: DC to 8 Hz

Output rate: 32 Hz

3D acceleration sensor:

Measurement range: +/- 8 g

Noise: 4 mg

Output rate: 64 Hz

Pressure sensor:

Measurement range: 300 - 1100 hPa

Noise: 0,03 hPa

Output rate: 1 Hz

Temperature sensor:

Output rate: 1 Hz

Live analysis

EDA SCL mean

Temp mean

Movement Acceleration

Step count


State of charge


LED, 3-color

Vibration alarm



Micro-USB, Bluetooth Smart (4.0)


Java API for USB (Windows)

Example for Bluetooth Smart (Android)

Wear location

Wrist, Ankle

Environmental conditions


-20 °C to 60 °C

0 °C to 45 °C during charging


0 to 75 % Relative Humidity

Atmospheric pressure:

300 to 1100 hPa absolute


1 year


  • A Comparison between Laboratory and Wearable Sensors in the Context of Physiological Synchrony.
    J.-J. van Beers & Thammasan N. Stuhldreher I.-V. & A.-M. Brouwer (2020) in: ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction. Read more...
  • Moments That Matter? On the Complexity of Using Triggers Based on Skin Conductance to Sample Arousing Events Within an Experience Sampling Framework..
    S. van Halem & E. van Roekel & L. Kroencke et al. (2020). Read more...
  • Evaluating Usability Aspects of a Mixed Reality Solution for Immersive Analytics in Industry 4.0 Scenarios.
    B. Hoppenstedt & T. Probst & M. Reichert et al. (2020). Read more...
  • Social anxiety is associated with heart rate but not gaze behavior in a real social interaction..
    L. Rösler & S. Göhring & M. Strunz et al. (2020) in: Journal of Behavior Therapy and Experimental Psychiatry (70). Read more...
  • Measuring Behavior 2020-21.
    A. Spink & J. Barski & A.-M. Brouwer et al. (2020) in: 13-15 October 2021, Kraków, Poland. Read more...
  • Physiological synchrony in EEG, electrodermal activity and heart
    rate reflects shared selective auditory attention.
    I.-I. Stuhldreher & N. Thammasan & J.-B.-F. van Erp et al. (2020) in: Journal of Neural Engineering (17). Read more...
  • Applicability of Immersive Analytics in Mixed Reality: Usability Study.
    Burkhard Hoppenstedt (2019).
  • Electrodermal activity patterns in sleep stages and their utility for sleep versus wake classification.
    Anne Herlan & Jörg Ottenbacher & Johannes Schneider et al. (2018) in: Journal of sleep research (28). Read more...
  • A mixed-methods study of physiological reactivity to domain-specific problem solving: methodological perspectives for process-accompanying research in VET.
    Tobias Kärner (2017) in: Empirical Research in Vocational Education and Training (9). Read more...
  • Estudo piloto em câmara climática: efeito da luz natural em aspectos de saúde e bem-estar não relacionados à visão.
    Cintia Akemi Tamura & Eduardo Leite Krüger (2016) in: Ambiente Construído (16). Read more...
  • Detecting cognitive underload in train driving: A physiological approach.
    Dan Basacik & Sam Waters & Nick Reed (2015). Read more...
  • Mobile Sensors for Multiparametric Monitoring in Epileptic Patients.
    Stefan Hey & Panagiota Anastasopoulou & André Bideaux et al. (2015) in: Cyberphysical Systems for Epilepsy and Related Brain Disorders: Multi-parametric Monitoring and Analysis for Diagnosis and Optimal Disease Management. Read more...
  • A personalized and reconfigurable cyberphysical system to handle multi-parametric data acquisition and analysis for mobile monitoring of epileptic patients.
    A. Bideaux & P. Anastasopoulou & S. Hey et al. (2014) in: Sensing and Control S&C BArcelona, Spain. Read more...
  • Evaluation of environmental effects on the measurement of electrodermal activity under real-life conditions.
    Dorothee Kapp & Kristina Schaaff & Jörg Mathias Ottenbacher et al. (2014) in: Biomedical Engineering / Biomedizinische Technik (59).
  • Komfortgewinn für Passagiere auf Langstreckenflügen durch den Einsatz chronobiologisch angepasster LED-Kabinenbeleuchtung.
    A. Leder & J. Krajewski & S. Schnieder (2013) in: Deutscher Luft- und Raumfahrtkongress 2013, Stuttgart. Read more...
  • Publication recommendations for electrodermal measurements.
    WALTON T ROTH & MICHAEL E DAWSON & DIANE L FILION (2012) in: Psychophysiology (49).

You can find more publications here.